181 research outputs found

    Long-time dynamics of Rouse-Zimm polymers in dilute solutions with hydrodynamic memory

    Full text link
    The dynamics of flexible polymers in dilute solutions is studied taking into account the hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead of the Stokes force, and the motion of the solvent is governed by the nonstationary Navier-Stokes equations. The obtained generalized RZ equation is solved approximately. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the RZ model. The mean-square displacement (MSD) of the polymer coil is at short times \~ t^2 (instead of ~ t). At long times the MSD contains additional (to the Einstein term) contributions, the leading of which is ~ t^(1/2). The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. It is displayed in the long-time tails of their correlation functions, the longest-lived being ~ t^(-3/2) in the Rouse limit and t^(-5/2) in the Zimm case, when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular an effectively slower diffusion of the polymer coil, should be observable in dynamic scattering experiments.Comment: 6 page

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

    Full text link
    The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t3/2t^{-3/2} long time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.Comment: 8 pages, 6 figur

    Haemodynamic, endocrine and renal actions of adrenomedullin 5 in an ovine model of heart failure

    Get PDF
    AM5 (adrenomedullin 5), a newly described member of the CGRP (calcitonin gene-related peptide) family, is reported to play a role in normal cardiovascular physiology. The effects of AM5 in HF (heart failure), however, have not been investigated. In the present study, we intravenously infused two incremental doses of AM5 (10 and 100 ng/min per kg of body weight each for 90 min) into eight sheep with pacing-induced HF. Compared with time-matched vehicle control infusions, AM5 produced progressive and dose-dependent increases in left ventricular dP/dt(max) [LD (low dose), +56 mmHg/s and HD (high dose), +152 mmHg/s] and cardiac output (+0.83 l/min and +1.81 l/min), together with decrements in calculated total peripheral resistance (−9.4 mmHg/min per litre and −14.7 mmHg/min per litre), mean arterial pressure (−2.8 mmHg and −8.4 mmHg) and LAP (left atrial pressure; −2.6 mmHg and −5.6 mmHg) (all P<0.001). HD AM5 significantly raised PRA (plasma renin activity) (3.5-fold increment, P<0.001), whereas plasma aldosterone levels were unchanged over the intra-infusion period and actually fell in the post-infusion period (70% decrement, P<0.01), resulting in a marked decrease in the aldosterone/PRA ratio (P<0.01). Despite falls in LAP, plasma atrial natriuretic peptide and B-type natriuretic peptide concentrations were maintained relative to controls. AM5 infusion also induced significant increases in urine volume (HD 2-fold increment, P<0.05) and urine sodium (2.7-fold increment, P<0.01), potassium (1.7-fold increment, P<0.05) and creatinine (1.4-fold increment, P<0.05) excretion and creatinine clearance (60% increment, P<0.05). In conclusion, AM5 has significant haemodynamic, endocrine and renal actions in experimental HF likely to be protective and compensatory in this setting. These results suggest that AM5 may have potential as a therapeutic agent in human HF

    Simulation of dilated heart failure with continuous flow circulatory support

    Get PDF
    Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/ without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery. © 2014 Wang et al

    Myocardial Hypertrophy Overrides the Angiogenic Response to Hypoxia

    Get PDF
    Background: Cyanosis and myocardial hypertrophy frequently occur in combination. Hypoxia or cyanosis can be potent inducers of angiogenesis, regulating the expression of hypoxia-inducible factors (HIF), vascular endothelial growth factors (VEGF), and VEGF receptors (VEGFR-1 and 2); in contrast, pressure overload hypertrophy is often associated with impaired pro-angiogenic signaling and decreased myocardial capillary density. We hypothesized that the physiological pro-angiogenic response to cyanosis in the hypertrophied myocardium is blunted through differential HIF and VEGF-associated signaling. Methods and Results: Newborn rabbits underwent aortic banding and, together with sham-operated littermates, were transferred into a hypoxic chamber (FiO2 = 0.12) at 3 weeks of age. Control banded or sham-operated rabbits were housed in normoxia. Systemic cyanosis was confirmed (hematocrit, arterial oxygen saturation, and serum erythropoietin). Myocardial tissue was assayed for low oxygen concentrations using a pimonidazole adduct. At 4 weeks of age, HIF-1α and HIF-2α protein levels, HIF-1α DNA-binding activity, and expression of VEGFR-1, VEGFR-2, and VEGF were determined in hypoxic and normoxic rabbits. At 6 weeks of age, left-ventricular capillary density was assessed by immunohistochemistry. Under normoxia, capillary density was decreased in the banded rabbits compared to non-banded littermates. As expected, non-hypertrophied hearts responded to hypoxia with increased capillary density; however, banded hypoxic rabbits demonstrated no increase in angiogenesis. This blunted pro-angiogenic response to hypoxia in the hypertrophied myocardium was associated with lower HIF-2α and VEGFR-2 levels and increased HIF-1α activity and VEGFR-1 expression. In contrast, non-hypertrophied hearts responded to hypoxia with increased HIF-2α and VEGFR-2 expression with lower VEGFR-1 expression. Conclusion: The participation of HIF-2α and VEGFR-2 appear to be required for hypoxia-stimulated myocardial angiogenesis. In infant rabbit hearts with pressure overload hypertrophy, this pro-angiogenic response to hypoxia is effectively uncoupled, apparently in part due to altered HIF-mediated signaling and VEGFR subtype expression

    Vasodilators in the treatment of acute heart failure: what we know, what we don’t

    Get PDF
    Although we have recently witnessed substantial progress in management and outcome of patients with chronic heart failure, acute heart failure (AHF) management and outcome have not changed over almost a generation. Vasodilators are one of the cornerstones of AHF management; however, to a large extent, none of those currently used has been examined by large, placebo-controlled, non-hemodynamic monitored, prospective randomized studies powered to assess the effects on outcomes, in addition to symptoms. In this article, we will discuss the role of vasodilators in AHF trying to point out which are the potentially best indications to their administration and which are the pitfalls which may be associated with their use. Unfortunately, most of this discussion is only partially evidence based due to lack of appropriate clinical trials. In general, we believe that vasodilators should be administered early to AHF patients with normal or high blood pressure (BP) at presentation. They should not be administered to patients with low BP since they may cause hypotension and hypoperfusion of vital organs, leading to renal and/or myocardial damage which may further worsen patients’ outcome. It is not clear whether vasodilators have a role in either patients with borderline BP at presentation (i.e., low-normal) or beyond the first 1–2 days from presentation. Given the limitations of the currently available clinical trial data, we cannot recommend any specific agent as first line therapy, although nitrates in different formulations are still the most widely used in clinical practice
    corecore